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Abstract Dynamical aspects of quantum Brownian motion in a low temperature
environment are investigated. We give a systematic calculation of quantum entangle-
ment among two Brownian oscillators without invoking Born–Markov approximation
widely used for the study of open systems. Our approach is suitable to probe short
time dynamics at cold temperatures where many experiments on quantum information
processing are performed.
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1 Introduction

Chemical systems such as liquid NMR have been actively used for quantum infor-
mation processing experiments [1]. Hybrid devices based on molecular ensembles
on solid state circuits provide many advantages as quantum processors such as long
lasting memory, good controlability and scalability [2].

Implementing quantum information processing devices requires precise knowledge
of quantum open systems. The detailed study of quantum open systems are often
prevented by a limitation of analytical or numerical resources to probe systems with
large degrees of freedom. The first principle calculation of open quantum systems
based on projection operators [3,4] or influence functionals [5] has been developed
and applied to numerous problems [6,7]. Reduced dynamics obtained by these methods
follows non-Markovian evolution carrying the memory of environment. Solving the
equations of motion obtained by these method directly is generally difficult to deal
with as they are given by integro-differential equations.
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Various approximation schemes have been used to simplify the exact evolution to
study open system evolution. Most commonly used approximation is Born approxi-
mation in which the system–bath interaction is treated perturbatively. However, naive
Born approximation applied to quantum open systems does not guarantee the positiv-
ity of the density matrix and requires a caution particularly when evaluating quantities
sensitive to this aspect such as quantum entanglement.

For a weak system–bath interaction, bath is disturbed by the interaction only in a
small amount and tends to reset to the original state in a short time compared to the
system time scale. The correlation among the bath variables may become negligible
compared to the system time scale. In a Born–Markov approximation, the bath correla-
tion is ignored. At sufficiently low temperature, however, the bath memory can persist
for a long time and this approximation is expected to break down. Regardless of the
temperature, the noise with long range correlation such as 1/f noise cannot be treated
under this approximation. 1/f noise is ubiquitous causing a problem in implement-
ing a quantum circuit using electronic instruments in solid state, ion trap, or hybrid
molecular devices. Decoherence in a non-equilibrium bath [8] also shows a peculiar
behavior which is significantly different from the one under Markov approximation.

Further approximation such as rotating-wave approximation is commonly used with
Born–Markov approximation. There we assume weak system–bath interaction such
that a coupling becomes only among near resonant modes. We further ignore counter
rotating terms since they are expected to be averaged out during a sufficiently long
observation time. The rotating-wave approximation is thus not suitable for describing
short time dynamics in a strong coupling regime.

Quantum entanglement, manifestation of intrinsic non-locality in quantum mechan-
ics [9], now became one of the most active research topics in quantum information
science. It also has been a long historical issue as the discrepancy between quantum
and classical mechanics is a serious obstacle to understand macroscopic classical and
quantum mechanics from the view of microscopic quantum dynamics [10,11].

Conversely but for the same reason, to manipulate quantum systems in order to be
useful in the macroscopic world is a formidable task. Recent progress in this direction
is motivated by rapid progress in quantum technology, where there is a demand for
a precise control of small quantum devices. Quantum entanglement is considered to
be a valuable resource for practical applications such as quantum computation and
communication [12].

Many works have been devoted to clarify the rigorous criteria for entanglement.
For continuous variables, the necessary and sufficient criteria for entanglement can be
given in terms of Peres-Horodecki criteria [13–15], negativity [16], and entanglement
of formation [17]. Most of these works are devoted to study the static properties of
general pure and mixed states. In light of information processing, it is also desirable
to study the dynamical properties based on the realistic models in an open system
setting.

Quantized harmonic oscillators have been playing an important role in a history of
quantum mechanics. Realization of quantum protocols based on continuous variables
such as quantum teleportation [18] and quantum key distribution [19] show that they
also play the similar crucial role in quantum information science. Realization of the
similar protocols based on solid state devices is a highly formidable task since the
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disturbance from environment in solid state systems is much stronger than in optical
systems.

So far the studies of continuous variables for open systems are based on the master
equation under Born–Markov rotating wave approximation such as Lindblad equations
[20] or the phenomenological model with high temperature Markovian bath [21].
Applications of these methods are limited to the high temperature regime or slow
dynamics with Ohmic noise, while actual solid state implementation operates at low
temperatures manipulated with fast pulses and often suffers from 1/f noise.

Most of the solid state implementation of quantum information devices operate in a
ultra-cold temperature in order to maintain quantum coherence. For instance, typical
superconducting qubits operate <100 mK [22]. At ultra-cold temperatures, the memory
effect in the environment variables is no longer negligible. The system-environment
interaction in solid state devices is typically much stronger than those qubits based on
atom-optical devices. These conditions are opposite to those where the Born–Markov
approximation is applicable. Thus we need to develop the method to probe the regime
beyond the conventional Born–Markov approximation.

Born and rotating wave approximations are limited to weak coupling regime and
do not guarantee the positivity of the density matrix evolution. Since separability
criteria is based on the positivity of the density matrix, a caution is required to study
entanglement under these approximations.

In the present paper, we study the precise mechanism of open system entanglement
dynamics based on a Brownian oscillator model [23], where both system and environ-
ment consist of harmonic oscillators. Since our model is formally exactly solvable,
it makes us possible to probe the precise dynamics of entanglement without conven-
tional approximations. Previous works for the study of a two-level system revealed
that non-Markovian dynamics that plays the major role at low temperatures is highly
non-trivial [6,24].

In Sect. 2, we develop systematic tools for our analysis. The reduced density matrix
in the Wigner representation is calculated for two quantum Brownian oscillator model.
In Sect. 3, we first make sure that uncertainty relations are always satisfied in our model.
They are time and temperature dependent as our system stays mostly far from equilib-
rium. Next we make partial transpose operation to our density matrix. In the Wigner
representation, the partial transpose operation corresponds to the partial mirror re-
flection. We again study uncertainty relations after partial transpose. According to the
Peres-Horodecki-Simon criteria, the violation of uncertainty relations after partial mir-
ror reflection can be used as a signature of quantum entanglement. Entanglement mea-
sures, the negativity and the logarithmic negativity, are also calculated for comparison.

2 General formulation

We consider a system composed of two harmonic oscillators. Our Lagrangian is given
by

L S =
2∑

j=1

M j Ṙ2
j

2
− V (R1, R2) , (1)
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where the potential V is assumed to be harmonic:

V (R1, R2) =
2∑

j=1

M j�
2
j

2
R2

j . (2)

Each oscillator variable R j located at the origin x = 0 couples linearly with a scalar
field φ via minimal coupling as

L I = −
2∑

j=1

λ j Ṙ j (t)φ(0, t). (3)

The field Lagrangian is

Lφ = 1

2

∫
dx
[
(∂xφ)2 − m2φ2

]
. (4)

The scalar field φ propagating in one-dimensional space allows a mode decomposition:

φ(x, t) =
∫

dk

(2π)1/2
√

2ωk

{
bke−iωk t+ikx + b†

k eiωk t−ikx
}

. (5)

In this paper, we study the massless field, then ωk = |k|. We consider the field φ as an
environment and trace out to obtain dissipative dynamics for oscillator variables R j .

The Heisenberg equations that R j satisfy have the form of damped harmonic
oscillators [7]:

M j
d2 R j (t)

dt2 + M j�
2
j R j (t) − 2

2∑

l=1

∫ t

0
ds

dαI jl(t, s)

dt

dRl(s)

ds
= 0, (6)

where

αI jl(t, t ′) = −λ jλl

∑

k

sin
[
ωk(t − t ′)

]
/ωk (7)

is an imaginary part of the response function [5] defined as
α jl(t, t ′) ≡ 2λ jλl

∑
k e−iωk (t−t ′)/ωk with

∑
k ≡ ∫ dk/(2π). Note that αI jl(t, t ′)

is antisymmetric in indices: αI jl(t, t ′) = −αI l j (t ′, t). Without any approximations,
Eq. 6 has a non-local form with kernels given by αI jl(t, t ′). Thus the value of R j at
each moment depends on their entire history of the past.

In one dimensional space when a ultraviolet cutoff of the field modes is brought to in-
finity, Eq. 6 will be reduced to a local form. We write γ1 ≡ λ2

1/M1, γ2 ≡ λ2
2/M2, γ12 ≡

λ1λ2/M2, γ21 ≡ λ1λ2/M1. In this case, Heisenberg equations of motion will be
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M1 R̈1(t) + M1�
2
1 R1(t) + γ1 M1 Ṙ1(t) + γ12 M2 Ṙ2(t) = 0

M2 R̈2(t) + M2�
2
2 R2(t) + γ2 M2 Ṙ2(t) + γ21 M1 Ṙ1(t) = 0. (8)

We write a pair of solutions of (8) with initial conditions R1(0) = R2(0) = 0 and
Ṙ1(0) = 1, Ṙ2(0) = 0 as h1(t) and h3(t). For identical two oscillators (M1 = M2 =
1,�1 = �2 ≡ �) coupled to φ with equal strength (λ1 = λ2) (hereafter we will drop
indices from these parameters), the solutions are given by h1(t) ≡ (g1(t)+ g0(t)) and
h3(t) ≡ (g1(t) − g0(t))/2, where

g1(t) = sin(�r t)

�r
e−γ t and g0(t) = sin(�t)

�
(9)

are solutions corresponding to two normal modes of a coupled oscillator and �2
r ≡

�2 − γ 2.
General solutions with arbitrary initial conditions R j0 and Pj0 of coupled

Heisenberg Eq. 8 for j = 1, 2 are

R j (t) = CR j R1 R10 + CR j P1 P10 + CR j R2 R20 + CR j P2 P20

+λ

∫ t

0
dsg1(t − s)φ̇(s),

Pj (t) = CPj R1 R10 + CPj P1 P10 + CPj R2 R20 + CPj P2 P20

+λ

∫ t

0
dsg2(t − s)φ̇(s), (10)

where g2 ≡ ġ1. The expectation value of phase space variables can be expressed in a
matrix form:

⎛

⎜⎜⎝

〈R1〉
〈P1〉
〈R2〉
〈P2〉

⎞

⎟⎟⎠ = C

⎛

⎜⎜⎝

R10
P10
R20
P20

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

CR1 R1 CR1 P1 CR1 R2 CR1 P2

CP1 R1 CP1 P1 CP1 R2 CP1 P2

CR2 R1 CR2 P1 CR2 R2 CR2 P2

CP2 R1 CP2 P1 CP2 R2 CP2 P2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

R10
P10
R20
P20

⎞

⎟⎟⎠ (11)

A time evolution matrix C for our solutions in (9) is given by

C ≡

⎛

⎜⎜⎝

f1 h1 f3 g3
f2 h2 f4 h4
f3 h3 f1 g1
f4 h4 f2 g2

⎞

⎟⎟⎠ , (12)

where f2 j−1 ≡ h2 j − 2ḣ2 j (0)g1 and f2 j ≡ ḟ2 j−1 for j = 1, 2.
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It is convenient for our purpose to introduce the Wigner distribution function as

W (R1, P1, R2, P2)

= 1

(2π)2

∫
d2rρ
(

R1 − r1

2
, R2 − r2

2
, R1 + r1

2
, R2 + r2

2

)
ei
∑2

j=1 Pj r j .

The characteristic function [25] for the Wigner distribution is given by

χW (Y, t) = Tr

⎡

⎢⎣ρ(0)e
i

4∑
j=1

Y j X j (t)

⎤

⎥⎦ , (13)

where we defined X ≡ (X1 . . . X4) with X2 j−1 ≡ √
�R j , X2 j ≡ Pj/

√
� for j =

1, 2 and Y ≡ (Y1...Y4). We will fix the normalization for each component that appeared
in C accordingly. The symmetric correlations can be obtained from χW (Y, t) as

〈{Xi , X j }〉 = −∂2χW (Y, t)

∂Yi∂Y j
|Y = 0, (14)

where {A, B} ≡ (AB + B A)/2 is an anticommutator. We trace out the field φ

in order to obtain the reduced dynamics of the system. With a factorized initial
condition: ρ(0) = ρS(0) ⊗ ρφ(0), χW is also factorized to two components as

χW (Y, t) = χ S
W (Y, t)χφ

W (Y, t). In our case, the system part is χ S
W (Y, t) =

TrS

[
ρS(0)ei

∑4
j=1 Y j XC j (t)

]
,where XC j (t) are solutions of Heisenberg equations with

φ = 0. The field characteristic function in (13) can also be evaluated exactly. We
assume that environment is initially in a thermal state with an inverse temperature
β ≡ 1/T . Its density matrix is given as ρφ(0) =∑k e−βωk | k〉〈k |. We obtain

χ
φ
W (Y, t) = exp

[
−1

2
YT �Y

]

= exp

⎡

⎣−1

2
(Y1 . . . Y4)

T

⎛

⎝
�11 · · · �14

· · ·
�41 · · · �44

⎞

⎠

⎛

⎝
Y1
· · ·
Y4

⎞

⎠

⎤

⎦ . (15)

Here

� jl(t) = λ2

2π

∫ ∞

0
dωωe−ω/
 coth(βω/2)

∫ t

0
ds
∫ t

0
ds′

×g j̃ (t − s) cos ω(s − s′)gl̃(t − s′), (16)

where j̃ ≡ (3 + (−1) j )/2, are time-dependent (non-equilibrium) fluctuations of the
system variables, a part induced from environment. Here we introduced the cutoff
frequency 
 for the field modes. Note that off-diagonal correlations � jl for j �=l
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are non-vanishing in general, that is, an interaction with a common environment in-
duces an effective interaction between two oscillator variables and thus correlation and
entanglement between them.

For an initial Gaussian state with vanishing mean positions and momentums,
〈X (0)〉 = 0, the system characteristic function also takes a Gaussian form:

χ S
W (Y, t) = exp

[
−1

2
YT (�X )2

C (t)Y
]

≡ exp

⎡

⎣−1

2
(Y1 . . . Y4)

T

⎛

⎝
〈{X1C , X1C }〉 · · · 〈{XC1, XC4}〉

· · ·
〈{XC4, XC1}〉 · · · 〈{XC4, XC4}〉

⎞

⎠

⎛

⎝
Y1
...

Y4

⎞

⎠

⎤

⎦ ,

(17)

where XC = (XC1 · · · XC4) satisfy the equations of motion (8) for damped harmonic
oscillators. (�X )2

C (t) are essentially the initial fluctuations of system variables shifted
by damped oscillatory motion of a coupled harmonic oscillator. Combining with the
characteristic function for the field, we obtain

W (X , t) = 1

(2π)2

1

(det(�X )2(t))1/2 exp

[
−1

2
X T ((�X )2(t))−1X

]
,

where (�X )2 = (�X )2
C + �.

3 Entanglement dynamics of quantum Brownian oscillators

Let us consider a two-mode squeezed state with a squeezing parameter r as an initial
state [26]. Its correlation matrix is

(�X )2
C (0) ≡ 〈{XC (0),X T

C (0)}〉 = 1

2

(
cosh(2r)1 − sinh(2r)σ3

− sinh(2r)σ3 cosh(2r)1

)
.

In the Wigner representation, the same state can be expressed as

W (R1, R2, P1, P2) = 4

π2 e−e2r
[
�(R1−R2)

2+(P1+P2)
2/�
]− e−2r

[
�(R1+R2)

2+(P1−P2)
2/�
]
.

(18)

This state can be obtained by acting a squeezing operator eir(R1 P2−P1 R2) on the vacuum.
A criteria for separability of a bipartite two-level-system was studied in [13]. The

necessary and sufficient condition for separability of the density matrix is to have only
non-negative eigenvalues after partial transpose of one of its subsystem. The same
criteria is not always sufficient for the bipartite system with more than two levels
[14]. The extension of this criteria to continuous Gaussian variables was first given in
[15]. For Gaussian variables, the partial transpose of a density matrix in a coordinate
representation for one oscillator component is equivalent to a mirror reflection of that
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component in the Wigner distribution function. The necessary and sufficient condition
for a continuous variable quantum state to be separable is that the partial mirror
reflected state is still a physical quantum state that satisfies the uncertainty principle.
In the phase space representation, the partial mirror reflection on the second variable
can be stated as (R1, P1, R2, P2) → (R1, P1, R2,−P2). In terms of X , this can be
expressed as the matrix operation by the matrix η ≡ diag(1, 1, 1,−1) as X → ηX .
It follows that the partial mirror reflection transforms the covariance matrix as

(�X )2 → η(�X )2ηT . (19)

Before we apply the above criteria to our covariance matrix (�X )2, let us make
three local Bogoliubov transformations to simplify the form of the covariance matrix.
These local transformations do not change the separability of the system. First we
consider the local orthogonal transformation

M4 ≡
(

M2 0
0 M2

)
∈ O(2, R)

⊗
O(2, R) ⊂ O(4, R), (20)

where M2 ∈ O(2, R) is an orthogonal matrix. Under M4, a symmetric matrix of the
form

(�X )2 ≡ 〈{X ,X T }〉 ≡
(

D A
AT D

)
(21)

transforms to

M4(�X )2 MT
4 ≡
(

M2 DMT
2 M2 AMT

2

M2 AT MT
2 M2 DMT

2

)
. (22)

By a suitable choice of M4, we can diagonalize D. Next we make a local symplectic
transformation with another matrix S4 ∈ Sp(2, R)

⊗
Sp(2, R) that has a form:

S4 ≡
(

S2 0
0 S2

)
, (23)

where S2 ∈ Sp(2, R) is a symplectic matrix. For a suitable choice of S2, we can make
S2 M2 DMT

2 ST
2 to be diagonal with an equal component d. Furthermore another trans-

formation with an orthogonal matrix O4 ∈ O(2, R)
⊗

O(2, R) that has a form:

O4 ≡
(

O1 0
0 O2

)
(24)

can make (�X )2 into the following canonical form:
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(�XC )2 =

⎛

⎜⎜⎝

d 0 a 0
0 d 0 b
a 0 d 0
0 b 0 d

⎞

⎟⎟⎠ . (25)

From the Williamson’s theorem [27], there exists a symplectic transformation that
diagonalizes a positive-definite 4 × 4 symmetric matrix into the following form:

(�XD)2 =

⎛

⎜⎜⎝

ζ1 0 0 0
0 ζ1 0 0
0 0 ζ2 0
0 0 0 ζ2

⎞

⎟⎟⎠ .

Although such a symplectic transformation does not preserve the eigenvalue spectrum
in general, the diagonal components ζl for l = 1, 2 can be calculated. Writing a
commutation relation in a matrix form as

[
Xi , X j

] = i�i j with

� =

⎛

⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟⎠ ,

we construct a real symmetric matrix �X�(�X )2�T �X . This matrix has an eigen-
value spectrum ζ 2

l (l = 1, 2) [28]. The uncertainty relation can be generalized to a
symplectic invariant form (�X )2 + i�/2 ≥ 0. By changing to the diagonalized form
(�XD)2 above, the uncertain relation is equivalent to saying that ζl ≥ 1/2 for all l.
Although this uncertain relation is invariant in arbitrary symplectic transformations,
they can change the entanglement property. Thus we restrict our transformation to
local symplectic transformations and use the canonical form of (�XC )2 in (25) for
our analysis. Our separability criteria is invariant under local transformations.

The uncertainty relation expressed by the components in (�XC )2 are given by

(d + a)(d + b) ≥ 1
4

(d − a)(d − b) ≥ 1
4

. (26)

These are generalizations of the familiar uncertain relations for pure state two os-
cillators to general mixed states. They can be expressed as �R̃2

1�P̃2
1 ≥ 1

4 and
�R̃2

2�P̃2
2 ≥ 1

4 in the coordinates that diagonalize the correlation matrix (�X )2.
Under the partial transpose in (19), b → −b. Thus the conditions for separability

can be written as

(d + a)(d − b) ≥ 1
4

(d − a)(d + b) ≥ 1
4 .

(27)
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Fig. 1 The temporal evolution of the uncertainty function (ζ− in Eq. 28) is plotted. The initial condition is
a two mode squeezed state with r = 0.05. Other parameters are γ = 0.01 GHz,
 = 50 GHz,� = 1.0 GHz

One can easily see that the two-mode squeezed state we introduced in (18) satisfies
the uncertainty relation in Eq. 26. The separability condition (27) implies e4r ≥ 1 and
e−4r ≥ 1, which only holds if r = 0. Thus this state is entangled as long as r �= 0. In
r → ∞ limit, the state becomes the original EPR state discussed in [9].

In order to make invariance under the local Bogoliubov transformation manifest,
one can write uncertainty relations (26) explicitly by using the symplectic invariants
constructed from the determinants of covariances |A|, |D|, |(�X )2| as

ζ 2± = |D| + |A| ±√(|D| + |A|)2 − |(�X )2| ≥ 1
4 . (28)

In Fig. 1, the temporal behavior of the uncertainty function ζ− is plotted. The initial
state is a pure two mode squeezed state and satisfies the minimum uncertainty 1/4.
As the state becomes mixed, the uncertainty increases monotonically in time even for
a zero temperature case. At higher temperature, the rate of increase is faster.

Similarly the separability conditions (27) are

λ2± = |D| − |A| ±√(|D| − |A|)2 − |(�X )2| ≥ 1
4 . (29)

Note that the inequalities for ζ+ and λ+ in (28) and (29) follow automatically from
those for ζ− and λ−. Thus λ− carries the essential information on the separability
of quantum states. In Fig. 2, time evolution of the λ− is plotted. For an initial coher-
ent state, the uncertainty relation for the partial transposed state is always satisfied
throughout the whole evolution indicating that there is no entanglement. For an initial
squeezed state (r = 0.1), the uncertainty relation is violated initially but eventually
satisfied indicating that there is a crossover from an entangled to a separable state. The
asymptotic value of separability seen in λ− appears to be independent of the degree
of initial squeezing.
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Fig. 2 The temporal evolution of the uncertainty function ( λ− in Eq. 29) after partial transpose is plotted.
The initial condition is a two mode squeezed state with r = 0.1 for the thick solid curve and a coherent state
(r = 0) for the thin solid curve. Other parameters are γ = 0.1 GHz, 
 = 50 GHz, � = 1.0 GHz, T = 0

The negativity N [16,29] for quantum Brownian particles can be defined as

N = ||ρT
r || − 1

2
, (30)

where ρT
r is the reduced density matrix after partial transpose. N is equal to the sum

of all negative eigenvalues of ρT
r and measures how much ρT

r fails to be positive.
From the Peres criteria, it can be used as a measure of entanglement. It also has a
nice property as an entanglement monotone such that it does not increase under local
operations and classical communications. The logarithmic negativity EN defined as

EN = log2 ||ρT
r || (31)

also has the similar property. Since diagonalization of (�X )2 brings the original state
into the thermal state, the partial transposed density matrix after the same transfor-
mation also has the thermal form that can be written as a function of the symplectic
invariants λ± as

ρT
r =
∏

±

[(
2

2λ± + 1

) ∞∑

n=1

(
2λ± − 1

2λ± + 1

)n

|n±〉〈n±|
]

. (32)

For separable states, λ± ≥ 1/2. Thus ||ρT
r || = 1 and N = EN = 0 follows. For

entangled states, λ− < 1/2 but λ+ ≥ 1/2. The latter follows because λ+ > ζ− for
|A| < 0 (if |A| > 0, the state is separable from (26) to (29)). ||ρT

r || = 1/2λ− follows.
Thus both N and EN can be expressed in terms of λ− as
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Fig. 3 The negativity N and the logarithmic negativity EN are shown. The initial state is a two-mode
squeezed state with r = 0.1. N and EN both remain zero in case of the two mode coherent state initial
condition r = 0. Other parameters are γ = 0.1 GHz, 
 = 50 GHz, � = 1.0 GHz, T = 0

N = max

[
0,

1 − 2λ−
4λ−

]
,

EN = max
[
0,− log(2λ−)

]
. (33)

In Fig. 3, the negativity N and the logarithmic negativity EN are shown as a function
of time. The initial pure two mode squeezed state has the maximum entanglement that
decays monotonically in time. They both vanish at tDE =0.45 ns and remain zero.
This disentanglement time scale tDE measured this way is the same as the time when
the uncertainty relation for the partial transposed state recovers (the lower curve in
Fig. 2) as we expect.

4 Summary

In this work, we used two quantum Brownian oscillator model to study the dynamical
aspect of quantum entanglement without Born–Markov approximation. We studied
several different criteria for quantum entanglement. The uncertainty function for the
two-mode squeezed state under partial transpose initially violates the uncertainty prin-
ciple but eventually satisfies it. Invoking the Peres-Horodecki-Simon’s criteria, this
corresponds to the temporal crossover from an entangled to separable state. The nega-
tivity and the logarithmic negativity show a monotonic decrease and vanish indicating
the similar crossover. We thus saw that, through the analysis of exact dynamics, the
effect of environment destroys quantum entanglement among Brownian oscillators
through the decoherence mechanism.
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